**RESULTS**

480 min

4

Without

8

are

101

is

evaporation

of

samples

CO

increase

and

C

and

pH

bicarbonate
to

media

pH
to

in

use

2

during

oil
determine

11

pH>

overlay,

11

stable

of

gametes/embryos

media

with

overlay

a

confirmed

oil

a

be

with

6

or

to

avoiding

of

isolette,

media

(slope

overlay

a

stabilize

the

viability

confines

which

indicated

> term
to

12

approaches

8

6

were

21

to

in

value

a

during

stability

concern

increased

should

16

13

p<
pH

pH

gametes/embryos

and

B

and

incubation

without

overlay

time

with

a

pH

7

slope,

31

the

of

of

may

with

cover

and

culture

incubator

a

overlay

specialized

media

61

an

end

Using

attempting

software

after

from

changes

with

portable

pH

increase,

outside

7.29

or

the

pH

91

20

a

maintained

oil

in

some

toxicity

pH

incubation

31

similar

subsequently

stress

at

each

following

one

of

> sensor

buffered

of

and

maintains

that

not

the

oil

media

lines

8

the

is

Average

slope

stability,

and

buffer

not

pH

over

occurs

measured

the

over

isolette,

the

incubation

if

Alternatively,

of

observation

slope,

incubator

similar

media

be

oil

methods

respectively

7

within

zwitterionic

environment

pH

were

this

to

isolette

with

oil

media

may

with

oil

media

6

and

incubators,

observation

2

and

similar

media

be

oil

media

were

8

an

end

MT Kan

SE Moayeri

WB Schoolcraft

1Fertility Lab Sciences, 2CCRM Orange County, 3Colorado Center for Reproductive Medicine

**ABSTRACT**

Background: Maintaining stability of media pH during embryo handling within the IVF laboratory is critical to minimize environmental stress that may compromise viability (1). Various methods cannot be used to stabilize pH of culture media. Validating these pH stabilizing approaches is important to verify that detrimental changes in pH are not occurring.

Objective: To assess stability of media pH over time within the confines of an IVF isofette chamber.

Materials and Methods: 100ul of bicarbonate buffered media with and without 35ul oil overlay were equilibrated overnight within a humidified incubator at 37°C with 7% CO2 and pH measured to establish baseline pH over time. Media tubes were then moved to a warmed/humidified isofette (IVF-1 chamber) with 7% CO2. pH was measured at 1min intervals over 20min, 2 and 8h using an optical pH sensor (SAFE Sens) to determine if isofette chambers maintained media pH. Regression lines were fitted to each data set and slopes, representing pH change or stability, were compared using Prism software.

Results: Average pH of bicarbonate buffered media with and without oil overlay in the incubator was 7.31±0.001 and 7.32±0.001, respectively. Upon transition to the isofette, average pH of media with and without oil over 20min was 7.29±0.002 and 7.31±0.001. After 20min, the slope, or pH increases with and without oil overlay in the isofette were similar and did not differ from incubators. However, after a 2hr incubation in the isofette, while pH of oil covered media displayed stable pH/slope similar to incubators, media with no oil had a significantly increased slope, p=0.001 and a pH value >7.36, which was outside of acceptable laboratory range. Similar results were obtained following 8hr incubation in the isofette, where the slope of the line and pH from media with no oil continued to increase (slope 0.01, p=7.52) and were significantly higher than media with oil overlay, p=0.001. Visual observation indicated a lowered end volume in samples after 8hr with no oil overlay.

Conclusions: Despite not being air tight, an isofette can provide a stable pH for short term handling of gametes/embryos. Using oil overlay, over a 2hr period, pH stability of bicarbonate buffered media in an isofette was similar to that of media in a traditional incubator. However, without oil overlay, pH increase occurs during incubation >2h. Despite a humidified environment in the isofette, this pH increase was likely due, in part, to media evaporation.

**BACKGROUND**

Reducing environmental stress imposed upon gametes and embryos while within the confines of the IVF laboratory is critical to optimize the culture system and subsequently maximize assisted reproductive outcomes.

pH of the culture medium is one environmental stressor that receives widespread attention when attempting to optimize the culture system. Culture medium pH is established primarily via the bicarbonate concentration in the medium and the CO2 levels in the laboratory incubator. When culture dishes are removed from the incubator for routine observation and handling, detrimental pH deviations may occur

Fortunately, several approaches exist to help stabilize media pH. One approach includes use of a zwitterionic-buffered, like MOPS, to maintain pH in room atmosphere. Some have concern about buffer toxicity. Alternatively, oil overlay may be used to combat pH changes. Similarly, toxicity of oil may be a concern for some. Finally, portable isofette chambers with a CO2 supply and internally mounted microscopes may also be used. Use of isofette chambers can reduce culture system variability by avoiding the use of specialized buffered media and can help avoid use of oil overlay. However, these chambers aren’t air tight, are expensive and can be cumbersome to use. Thus, their ability to maintain stable pH should be confirmed.

**OBJECTIVE**

To assess stability of media pH over time within the confines of an IVF isofette chamber.

**MATERIALS & METHODS**

100ul bicarb media ± 35ul oil overlay equilibrated overnight in a standard incubator to stabilize and obtain baseline pH

Media quickly moved to a gassed isofette (IVF-1 Chamber)

pH measured using real-time (SafeSens) at 1min intervals for 20min, 120min (2hrs) and 480min (8hrs)

Data graphed, regression lines fit and slopes (representing rate of pH change) compared using PRISM statistical software program. Averages compared using ANOVA and Tukey analysis

**RESULTS**

Table 1. Average pH of media with and without oil overlay following culture overnight in an incubator (baseline) and then for 20, 120 or 480 minutes inside an IVF isofette. Different superscripts represent statistically significant differences in pH between time-points within the same treatment (oil vs. no oil), p<0.01.

<table>
<thead>
<tr>
<th>Incubator</th>
<th>pH Measurement</th>
<th>Cold Incubator</th>
<th>IVF Isollette Chamber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overnight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil Overlay</td>
<td>7.14 ± 0.001p</td>
<td>7.19 ± 0.001</td>
<td>7.14 ± 0.001</td>
</tr>
<tr>
<td>No Oil Overlay</td>
<td>7.14 ± 0.001s</td>
<td>7.15 ± 0.001s</td>
<td>7.15 ± 0.003s</td>
</tr>
<tr>
<td>20min Avg pH</td>
<td>7.32 ± 0.001p</td>
<td>7.29 ± 0.002</td>
<td>7.31 ± 0.002</td>
</tr>
<tr>
<td>120min Avg pH</td>
<td>7.32 ± 0.003s</td>
<td>7.31 ± 0.001s</td>
<td>7.41 ± 0.003s</td>
</tr>
<tr>
<td>480min Avg pH</td>
<td>7.35 ± 0.003s</td>
<td>7.36 ± 0.001</td>
<td>7.41 ± 0.003s</td>
</tr>
</tbody>
</table>

- Despite not being air tight, an isofette can provide a stable pH for short term handling of gametes/embryos.
- Using oil overlay, over a 2hr period, pH stability of bicarbonate buffered media in an isofette was similar to that of media in a traditional incubator.
- Without oil overlay, pH increase occurs during incubation >2h.
- Despite a humidified environment in the isofette, pH increase over time was likely due, in part, to media evaporation.

**CONCLUSIONS**

Figure 1. IVF-1 Chamber isofette. The chamber provides a warmed, humidified and gassed environment to handle and observe gametes/embryos.

Figure 2. SAFE Sens real-time pH meter. A) optical sensor B) control unit C) sample tube.

Figure 3. Comparison of pH change (slope) of media A) with oil overlay and B) without oil overlay in an IVF isofette over 20 minutes following removal from a lab incubator. No statistical differences in pH change were observed.

Figure 4. Comparison of pH change (slope) of media A) with oil overlay and B) without oil overlay in an IVF isofette over 120min (2hrs) following removal from a lab incubator. Statistically significant differences in pH change (slope) were observed, p<0.001. After 120min, all of the media with no oil overlay increased to a value outside the acceptable laboratory range (7.35). This was more pronounced after 480min.