pHantastic Embryos And Where To Find Them: Can A Real-Time pH Monitoring System Represent The pH Environment Of Culture Media?

Casey DEAN¹, Kavyadharshini GUNASEGARAN¹, Justine GABRIEL¹, Daniela IACOBELLI¹, Kelli SORBY¹ ¹ N^o1 Fertility, Melbourne, Australia

Background

Maintaining optimal pH of culture media reduces environmental stressors on gametes and embryos, which is critical in supporting embryo development. SignipHyTM is a system that monitors pH in real-time within the incubator environment without disturbing the incubator or exposing the media to atmospheric conditions.

Objective

To determine if the SignipHy System can provide an accurate representation of the dynamic pH in culture media across a range of environmental conditions

Methods

Results

pH of Vitrolife G1+ under Vitrolife Ovoil in a 5-well dish was measured using a blood gas analyser and SignipHy at regular intervals under multiple experimental conditions. Statistical analyses used repeated measures ANOVA, Pearson's Correlation and Linear regression.

Tablet with TrakStation software

sv² sensor cup on TrakPod in BT37MKII Planer pH of media undergoing initial equilibration was found to decrease more rapidly in culture dishes (ΔpH 0.228/hr) than SignipHy (ΔpH 0.160/hr) over a 6 hour period (p=0.0005). Full equilibration was achieved in the culture dishes after 4 hours, while the SignipHy sensor stabilised after 6 hours.

TrakPod (fluorescent measurement device with a fiber optic cable)

sv² sensor cups are photo sensitive and must be kept in the dark -SignipHy -Culture Dish

When fully equilibrated dishes were exposed to 4% CO2, both systems tracked the resultant increase in pH. pH in the culture dishes increased more rapidly (Δ pH 0.098/hr) than SignipHy sensor (Δ pH 0.060/hr). Similarly, equilibrated media exposed to 2% CO2 showed an increase of pH in culture dishes of 0.171/hr compared with SignipHy sensor at 0.150/hr. SignpHy has a slight delay but still closely follows the pH changes in culture dishes under changing CO₂ concentrations.

SignipHy qc² Alignment Tool – for QC testing

Sensor cups and media equilibrated for 10-24 hours before routine operation

Conclusion

SignipHy was found to be a viable representation of dynamic pH under multiple experimental conditions, however, the rate of change was found to be slightly slower compared to standard dish preparation.

Correspondence: caseyd@number1fertility.com

